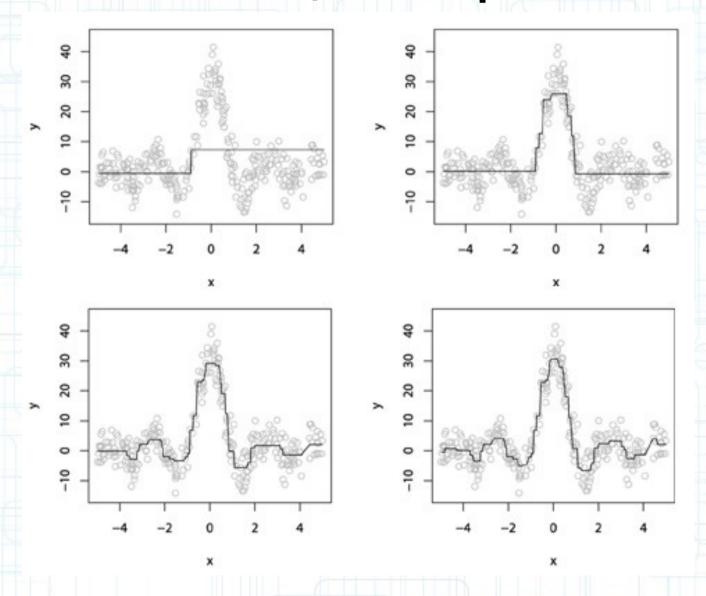
Машинное обучение Композиции алгоритмов



Содержание лекции

- Определение
- AdaBoost
- AnyBoost
- Градиентный бустинг
- Бэггинг и метод случайных подпространств

Определение

- Алгоритмы классификации часто представимы в виде: a(x) = C(b(x)), где функция b: X → R называется алгоритмическим оператором, C: R → Y решающим правилом.
- Композицией Т алгоритмов a_t(x) = C(b_t(x)),
 t = 1, . . . , Т называется суперпозиция алгоритмических операторов b_t : X → R,
 корректирующей операции F : R^T → R и решающего правила C : R → Y :

$$a(x) = C(F(b_1(x), \dots, b_T(x)))$$

Примеры

• Простое голосование

$$F(b_1(x),\ldots,b_T(x)) = \frac{1}{T} \sum_{t=1}^{T} b_t(x)$$

• Взвешенное голосование

$$F(b_1(x),\ldots,b_T(x))=\sum_{t=1}^{I}\alpha_tb_t(x)$$

Общий алгоритм построения композиции

$$a(x) = C(F(b_1(x), \dots, b_T(x))) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t b_t(x)\right)$$

$$Q_T = \sum_{i=1}^{\ell} \left[y_i \sum_{i=1}^{T} \alpha_t b_t(x_i) < 0 \right] \to \min$$

$$Y=\{\pm 1\}$$
, $b_t\colon X o \{-1,0,+1\}$, $C(b)={\sf sign}(b)$, $b_t(x)=0$ — отказ (лучше промолчать, чем соврать)

- При добавлении в композицию слагаемого α_tb_t(x) оптимизируется только базовый алгоритм b_t и коэффициент при нём α_t, а все предыдущие слагаемые α₁b₁(x), . . . , α_{t-1}b_{t-1}(x) полагаются фиксированными
- Пороговая функция потерь в функционале Q_т аппроксимируется (заменяется) непрерывно дифференцируемой оценкой сверху.

Общий алгоритм построения композиции

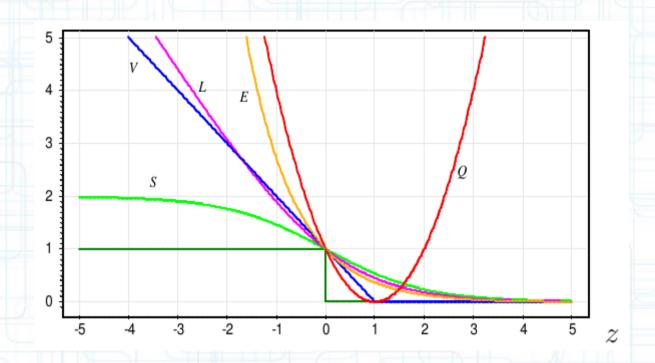
• Итерационный процесс:

$$egin{aligned} b_1 &= rg \min_b \, Qig(b, X^\ellig); \ b_2 &= rg \min_{b, F} \, Qig(F(b_1, b), X^\ellig); \ \cdots \ b_t &= rg \min_{b, F} \, Qig(F(b_1, \ldots, b_{t-1}, b), X^\ellig) \end{aligned}$$

 Алгоритм сильно упрощается, если задача для b_t сводится к исходной с весами объектов и с, возможно, другой функцией потерь:

$$b_t = \arg\min_b \sum_{i=1}^{\ell} w_i \widetilde{\mathscr{L}}(b(x_i), y_i)$$

Аппроксимации функции потерь



$$S(z)=2(1+e^z)^{-1}$$
 — сигмоидная; $L(z)=\log_2(1+e^{-z})$ — логарифмическая; $V(z)=(1-z)_+$ — кусочно-линейная; $E(z)=e^{-z}$ — экспоненциальная; $Q(z)=(1-z)^2$ — квадратичная.

AdaBoost

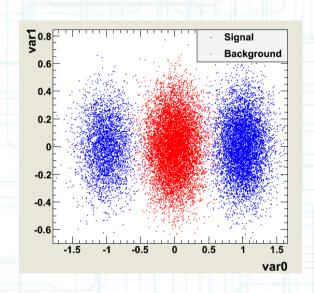
- Исторически первый
- Использует экспоненциальную аппроксимацию $[y_i b(x_i) < 0] \leqslant e^{-y_i b(x_i)}$
- Оценим функционал качества сверху

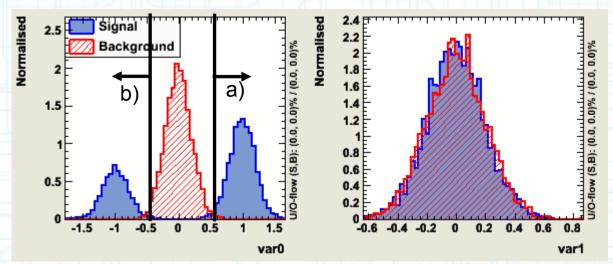
$$Q_T \leqslant \widetilde{Q}_T = \sum_{i=1}^{\ell} \exp\left(-y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)\right) = \sum_{i=1}^{\ell} \exp\left(-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)\right)$$

 Таким образом, задача сведена к исходной, но с весами и другой функцией потерь

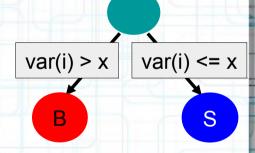
AdaBoost: демонстрация

Обучающая выборка:





Базовый классификатор:



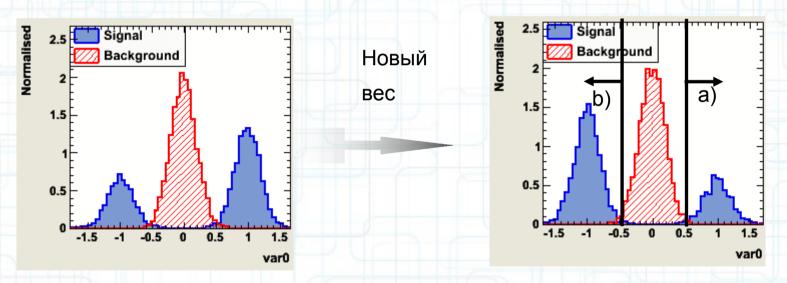
Всего два нормальных пороговых предиката:

- а) Var0 > 0.5 → ϵ_{signal} =66% $\epsilon_{\text{bkg}} \approx$ 0% общая ошибка 16.5%
- b) Var0 < -0.5 → ϵ_{signal} =33% $\epsilon_{\text{bkq}} \approx 0\%$ общая ошибка 33%

На первой итерации бустинга будет выбрано дерево с разделителем а)

AdaBoost: демонстрация

- Первый классификатор, выбрав разрез а) ошибается в 16.5 % случаев
- Перед построением следующего дерева присвоим объектам веса exp(-M)



Теперь разрез b) приводит к меньшей ошибке, чем a). Второе дерево разделит выборку по предикату Var0 < -0.5

AdaBoost

- Нормируем веса, чтобы их сумма = 1
- Определим две метрики качества:

$$N(b; U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = -y_i]; \qquad P(b; U^{\ell}) = \sum_{i=1}^{\ell} u_i [b(x_i) = y_i].$$

Теорема (Freund, Schapire, 1996)

Пусть для любого нормированного вектора весов U^{ℓ} существует алгоритм $b \in B$, классифицирующий выборку хотя бы немного лучше, чем наугад: $P(b; U^{\ell}) > N(b; U^{\ell})$.

Тогда минимум функционала $\widetilde{Q}_{\mathcal{T}}$ достигается при

$$b_T = \arg\max_{b \in B} \sqrt{P(b; \widetilde{W}^{\ell})} - \sqrt{N(b; \widetilde{W}^{\ell})}.$$

$$\alpha_T = \frac{1}{2} \ln \frac{P(b_T; \widetilde{W}^{\ell})}{N(b_T; \widetilde{W}^{\ell})}.$$

1

Доказательство

Воспользуемся тождеством $\forall \alpha \in \mathbb{R}, \ \forall b \in \{-1,0,+1\}$: $e^{-\alpha b} = e^{-\alpha}[b\!=\!1] + e^{\alpha}[b\!=\!-1] + [b\!=\!0].$

Положим для краткости $\alpha = \alpha_T$ и $b_i = b_T(x_i)$. Тогда

$$\widetilde{Q}_{T} = \left(e^{-\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = y_{i}] + e^{\alpha} \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = -y_{i}] + \sum_{i=1}^{\ell} \widetilde{w}_{i}[b_{i} = 0]\right) \sum_{i=1}^{\ell} w_{i}$$

$$=\left(e^{-lpha}P+e^{lpha}N+\left(1-P-N
ight)
ight)\widetilde{Q}_{T-1}
ightarrow\min_{lpha,b}.$$

$$\tfrac{\partial}{\partial\alpha}\widetilde{Q}_T = \left(-e^{-\alpha}P + e^{\alpha}N\right)\widetilde{Q}_{T-1} = 0 \ \Rightarrow \ e^{-\alpha}P = e^{\alpha}N \ \Rightarrow \ e^{2\alpha} = \tfrac{P}{N}.$$

Получили требуемое:
$$\alpha_T = \frac{1}{2} \ln \frac{P}{N}$$
.

Доказательство

Подставим оптимальное значение $lpha=rac{1}{2}\lnrac{P}{N}$ обратно в \widetilde{Q}_{T} :

$$\begin{split} \widetilde{Q}_T &= \left(e^{-\alpha}P + e^{\alpha}N + (1 - P - N)\right)\widetilde{Q}_{T-1} = \\ &= \left(1 + \sqrt{\frac{N}{P}}P + \sqrt{\frac{P}{N}}N - P - N\right)\widetilde{Q}_{T-1} = \\ &= \left(1 - \left(\sqrt{P} - \sqrt{N}\right)^2\right)\widetilde{Q}_{T-1} \to \min_b. \end{split}$$

Поскольку \widetilde{Q}_{T-1} не зависит от α_T и b_T , минимизация \widetilde{Q}_T эквивалентна либо максимизации $\sqrt{P}-\sqrt{N}$ при P>N, либо максимизации $\sqrt{N}-\sqrt{P}$ при P<N, однако второй случай исключён условием теоремы.

Получили $b_T = \arg\max_b \sqrt{P} - \sqrt{N}$. Теорема доказана.

Классический AdaBoost

- Пусть отказов нет, b_t: X → {±1}.
 Тогда P = 1 N
- Тогда минимум функционала Q_т достигается при

$$b_T = \arg\min_{b \in B} N(b; \widetilde{W}^{\ell}).$$

$$lpha_{\mathcal{T}} = rac{1}{2} \ln rac{1 - N(b_{\mathcal{T}}; \widetilde{W}^{\ell})}{N(b_{\mathcal{T}}; \widetilde{W}^{\ell})}.$$

Алгоритм AdaBoost

Вход: обучающая выборка X^{ℓ} ; параметр T;

Выход: базовые алгоритмы и их веса $\alpha_t b_t$, t = 1, ..., T;

1: инициализировать веса объектов:

$$w_i := 1/\ell, \quad i = 1, \ldots, \ell;$$

- 2: для всех t = 1, ..., T
- 3: обучить базовый алгоритм:

$$b_t := \arg\min_b N(b; W^{\ell});$$

4:
$$\alpha_t := \frac{1}{2} \ln \frac{1 - N(b_t; W^\ell)}{N(b_t; W^\ell)};$$

5: обновить веса объектов:

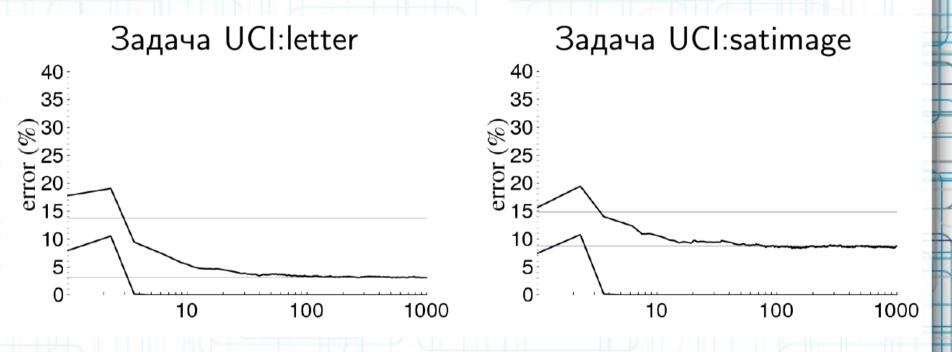
$$w_i := w_i \exp(-\alpha_t y_i b_t(x_i)), \quad i = 1, \ldots, \ell;$$

6: нормировать веса объектов:

$$w_0 := \sum_{j=1}^{\ell} w_j;$$

 $w_i := w_i/w_0, i = 1, ..., \ell;$

Обобщающая способность не ухудшается с ростом сложности Т



Schapire, Freund, Lee, Bartlett (1998) Boosting the margin: a new explanation for the effectiveness of voting methods // Annals of Statistics Vol.26, No.5, Pp. 1651–1686.

Замечания

- Базовые классификаторы (weak classifiers):
 - решающие деревья используются чаще всего
 - пороговые правила (data stumps)

$$B = \left\{ b(x) = \left[f_j(x) \leq \theta \right] \mid j = 1, \ldots, n, \ \theta \in \mathbb{R} \right\};$$

- Базовые классификаторы должны быть слабыми, из сильных хорошую композицию не построить
- Недостатки AdaBoost:
 - чрезмерная чувствительность к выбросам из-за е^{-м}

Обобщение: $\mathcal{L} = \mathcal{L}(M)$. AnyBoost

Возьмём $Y=\{\pm 1\}$, $b_t\colon X\to \mathbb{R}$, $C(b)=\operatorname{sign}(b)$; $\mathscr{L}(M)$ — функция потерь, гладкая функция отступа M;

$$M_T(x_i) = y_i \sum_{t=1}^T \alpha_t b_t(x_i)$$
 — отступ композиции на объекте x_i ;

Оценка сверху для числа ошибок композиции:

$$Q_T \leqslant \widetilde{Q}_T = \sum_{i=1}^{\ell} \mathscr{L}(M_{T-1}(x_i) + \alpha y_i b(x_i)) \to \min_{\alpha, b}.$$

Линеаризация функции потерь по α в окрестности $\alpha=0$:

$$\widetilde{Q}_T pprox \sum_{i=1}^{\ell} \mathscr{L}(M_{T-1}(x_i)) - \alpha \sum_{i=1}^{\ell} \underbrace{-\mathscr{L}'(M_{T-1}(x_i))}_{w_i} y_i b(x_i) o \min_b,$$

где w_i — веса объектов.

Обобщение: $\mathcal{L} = \mathcal{L}(M)$. AnyBoost

Минимизация линеаризованного $Q_{\mathcal{T}}$ при фиксированном lpha

$$\widetilde{Q}_T pprox \sum_{i=1}^{\ell} \mathscr{L}\big(M_{T-1}(x_i)\big) - \alpha \sum_{i=1}^{\ell} w_i y_i b(x_i) o \min_b.$$

приводит к принципу явной максимизации отступов (direct optimization of margin, DOOM):

$$\sum_{i=1}^{\ell} w_i y_i b(x_i) \to \max_b.$$

Затем lpha определяется путём одномерной минимизации $\widetilde{Q}_{\mathcal{T}}$.

Итерации этих двух шагов приводят к алгоритму AnyBoost.

Замечание. AnyBoost переходит в AdaBoost в частном случае, при $b_t \colon X \to \{-1,0,+1\}$ и $\mathscr{L}(M) = e^{-M}$.

Алгоритм AnyBoost

Вход: обучающая выборка X^{ℓ} ; параметр T;

Выход: базовые алгоритмы и их веса $\alpha_t b_t$, $t = 1, \ldots, T$;

- 1: инициализировать отступы: $M_i := 0$, $i = 1, \ldots, \ell$;
- 2: для всех t = 1, ..., T
- 3: вычислить веса объектов:

$$w_i = -\mathscr{L}'(M_i), i = 1, \ldots, \ell;$$

4: обучить базовый алгоритм согласно принципу DOOM:

$$b_t := \arg \max_b \sum_{i=1}^{\ell} w_i y_i b(x_i);$$

5: решить задачу одномерной минимизации:

$$\alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{\ell} \mathscr{L}(M_i + \alpha b_t(x_i)y_i);$$

6: обновить значения отступов:

$$M_i := M_i + \alpha_t b_t(x_i) y_i; \quad i = 1, \ldots, \ell;$$

Обобщение: *L* - ∀. Градиентный бустинг

Линейная (выпуклая) комбинация базовых алгоритмов:

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x), \quad x \in X, \quad \alpha_t \in \mathbb{R}_+.$$

Функционал качества с произвольной функцией потерь $\mathscr{L}(a,y)$:

$$Q(\alpha, b; X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}\left(\underbrace{\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha b(x_i), y_i}_{f_{T-1,i}}\right) \to \min_{\alpha, b}.$$

$$f_{T-1} = (f_{T-1,i})_{i=1}^\ell$$
 — текущее приближение $f_T = (f_{T,i})_{i=1}^\ell$ — искомый вектор, решение задачи $Q(f) o \min$

Friedman G. Greedy Function Approximation: A Gradient Boosting Machine. 1999.

Обобщение: *L* - ∀. Градиентный бустинг

Градиентный метод минимизации $Q(f) o \mathsf{min},\ f\in\mathbb{R}^\ell$:

 $f_0 :=$ начальное приближение;

$$f_{T,i} := f_{T-1,i} - \alpha g_i, \quad i = 1, \ldots, \ell;$$

 $g_i = \mathscr{L}'ig(f_{T-1,i},\,y_iig)$ — компоненты вектора градиента, lpha — градиентный шаг.

Наблюдение: это очень похоже на одну итерацию бустинга!

$$f_{T,i} := f_{T-1,i} + \alpha b(x_i), \quad i = 1,\ldots,\ell$$

Идея: будем искать такой базовый алгоритм b_T , чтобы вектор $(b_T(x_i))_{i=1}^\ell$ приближал вектор градиента $(-g_i)_{i=1}^\ell$:

$$b_T := \arg\min_b \sum_{i=1}^{\ell} (b(x_i) + g_i)^2$$

Алгоритм градиентного бустинга

Вход: обучающая выборка X^{ℓ} ; параметр T;

Выход: базовые алгоритмы и их веса $\alpha_t b_t$, $t=1,\ldots,T$;

- 1: инициализация: $f_i := 0$, $i = 1, \ldots, \ell$;
- 2: для всех t = 1, ..., T
- 3: найти базовый алгоритм, приближающий градиент:

$$b_t := \arg\min_{b} \sum_{i=1}^{\ell} (b(x_i) + \mathscr{L}'(f_i, y_i))^2;$$

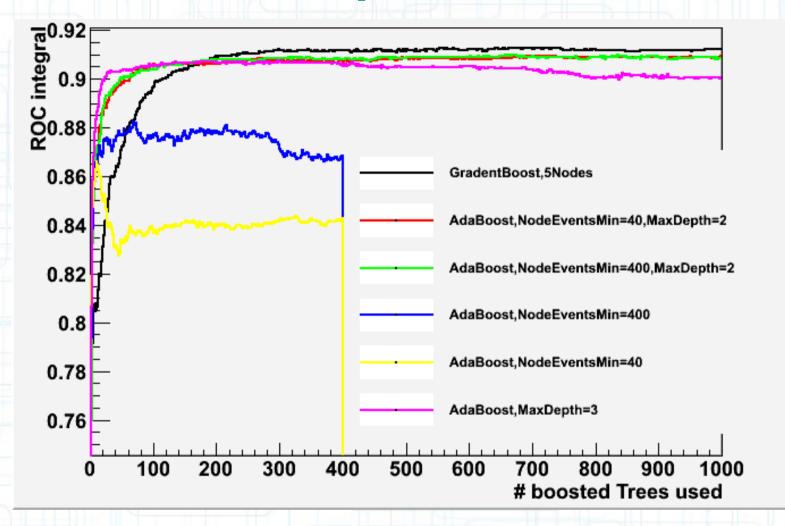
4: решить задачу одномерной минимизации:

$$\alpha_t := \arg\min_{\alpha>0} \sum_{i=1}^{\ell} \mathscr{L}(f_i + \alpha b_t(x_i), y_i);$$

5: обновить значения композиции на объектах выборки:

$$f_i := f_i + \alpha_t b_t(x_i); \quad i = 1, \ldots, \ell;$$

Эксперименты



Бустинг работает лучше всего для "слабых" базовых классификаторов Необходимо подбирать параметры деревьев

Выводы

- Градиентный бустинг наиболее общий из всех бустингов:
 - произвольная функция потерь
 - произвольное пространство оценок R
 - подходит для регрессии, классификации, ранжирования
- Интересная интерпретация бустинга: добавление базового алгоритма — это одна итерация градиентного спуска
- Обычно GB применяется к решающим деревьям
- Градиентный бустинг над ODT = Yandex.MatrixNet

Стохастические методы построения композиций

- Bagging обучает базовые алгоритмы по случайным подвыборкам (подмножество строк матрицы О-П)
- Метод случайных подпространств (RSM)

 обучает базовые алгоритмы по
 случайным подмножествам признаков
 (подмножество строк матрицы О-П)

Алгоритм

```
Вход: обучающая выборка X^{\ell}; параметры: T
    \ell' — длина обучающих подвыборок;
    n' — длина признакового подописания;
    \varepsilon_1 — порог качества базовых алгоритмов на обучении;
    \varepsilon_2 — порог качества базовых алгоритмов на контроле;
Выход: базовые алгоритмы b_t, t = 1, ..., T;
 1: для всех t = 1, ..., T
       U:= случайное подмножество X^\ell длины \ell';
 2:
      \mathscr{G} := случайное подмножество \mathscr{F} длины n';
 3:
      b_t := \mu(\mathscr{G}, U);
 4:
       если Q(b_t,U)>arepsilon_1 или Q(b_t,X^\ell\setminus U)>arepsilon_2 то
 5:
         не включать b_t в композицию;
 6:
Композиция — простое голосование: a(x) = C\left(\sum_{t=1}^{r} b_t(x)\right).
```

Сравнение

- Бустинг лучше для больших обучающих выборок и для классов с границами сложной формы.
- Бэггинг и RSM лучше для коротких обучающих выборок.
- RSM лучше в тех случаях, когда признаков больше, чем объектов, или когда много неинформативных признаков.
- Бэггинг и RSM эффективно распараллеливаются, бустинг выполняется строго последовательно.

Случайный лес (Random forest)

- каждое дерево b_t(x) обучается по случайной подвыборке с повторениями (Bagging)
- в каждой вершине каждого дерева рассматривается случайное подмножество из √п признаков (напоминает RSM)
- для ветвления выбирается признак с наилучшим пороговым предикатом по энтропийному критерию
- усечений (pruning) деревьев нет